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Fourier Analysis of Discrete-Time 
Signals

• Discrete-time signals processing 

• Fourier analysis

• Fast Fourier Transform algorithm

1-Fourier series for discrete-time periodic signals
2-Discrete-Time Fourier Transform for aperiodic signals
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The response of discrete-time linear
invariant systems to the complex

exponential with unitary magnitude
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linear combination of discrete-time complex exponentials with unitary 
magnitudes, different frequencies 

⇒ response of the discrete-time LTI system - linear combination of 
partial responses, H(Ωk) Φk[n]: 
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Fourier series for discrete-time
periodic signals

x[n] is periodic of period N if 

x[n+N]=x[n], for any integer n.

In a period N values {x[0], x[1], x[N-1]}. 

x[0]= x[N], x[N+1]= x[1] ... 

x[n]= x[(n)N]

(n)N - n in the class of quotient (remainder) modulo N. 
For n<0, the quotient (n)N positive.
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The space of periodic discrete-time signals of period N is  N 
dimensional => N-dimensional basis. Orthogonal basis
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Proof

• Orthogonality
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Completeness.

Any discrete-time periodic signal has the form: 
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with unique coefficients ck. With the notations: 
njkk

n
nj

n ee 00  and ΩΩ =φ=φ
the last relation becomes for n=0, n=1,…,n=N-1

-linear system of 

-N equations and

-N unknowns c0 , 
c1,…, cN-1. 
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The determinant of the eq.:

Representing the N discrete-time complex exponential with unitary 
magnitude in the complex plane, the following figure is obtained.
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It can be seen that:
( )

solution. unique has equations of system  theand
 0, zero,not  ist determinan  theso ,0 for  , ≠Δ≠φ−φ≠∀ lklklk

So, the considered set of complex exponentials is also complete.
Being orthogonal and complete it is a basis.
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The decomposition of the periodic discrete-time signal x[n] in the 
considered basis = decomposition in Fourier series:
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The sequence of coefficients is also periodic with same period.

[ ] { }kcnx ↔

,  0 1.k N kc c k N+ = ≤ ≤ −

!!!definition



7

13

• proof
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Examples

[ ] ⎟
⎠
⎞

⎜
⎝
⎛ π

= n
N

nx 2sin

( )
.

2
1

2
1

2
1

2
12sin

21222 n
N

Njn
N

jn
N

jn
N

j
e

j
e

j
e

j
e

j
n

N

π
−−

ππ
−

π

−=−=⎟
⎠
⎞

⎜
⎝
⎛ π

1. The signal                          

Euler’s relation :

Identification :
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Spectral diagrams, N=6
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Euler’s relation :

identification:



9

17

3. Periodic signal, period N.

definition:

For k=0:

18

the sum of a geometric series
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•truncation of the Fourier series of a discrete-time signal, 
an approximation of this signal. 

•better for higher number of terms. 

•all N terms no error.

•example 3 , N = 9 and 2N1+1 = 5 . Fourier coefficients : 
c0 = 0,556 , 

c1 = c8 =0,32 , 

c2 = c7 = -0,059 , 

c3 = c6 = -0,111, and

c4 = c5 = 0,073.

20

The truncated signal with 2M+1 terms from its Fourier series:

For M=1, 2, 3 and 4 :
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Properties of Discrete-Time Fourier 
Series

1. Linearity

x[n] and y[n] periodic with same period

Fourier coefficients ck
x and ck

y

ax[n]+by[n] - same period.

Homework: Prove it.
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2. Time Shifting

Dual operations: time shifting ↔ modulation in frequency 
(multiplication with a complex exponential).

The absolute value of the Fourier coefficients is not affected by 
time shifting. 

24

Dual operations: complex conjugation in time ↔ reversal 
and complex conjugation in frequency domain.

3. Complex conjugation
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Dual operations: time reversal ↔ reversal in frequency. 

Reversal is auto-dual.

4. Time Reversal

26

5. Time scale modification

Different than in continuous-time domain (the scale factor can’t 
be any real number). 

One way :

signal x[n] periodic - period N, => signal x(m)[n] periodic N’=mN. 

Proof.
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time dilation / interpolation : insert m-1 zeros between two 
consecutive samples of x[n]

The period of x(m)[n] is N’=mN, m times higher than the period of 
the signal x [n] 

The fundamental frequency of the new signal  - m times smaller. 

Dual operations : discrete-time dilation ↔ frequency 
compression with the same scale factor.  

28

The second way for the scale modification of a discrete-time 
signal is a time compression with information loss :

[ ] [ ]mnxnx m =)(



15

29

6. Signal’s modulation

dual operation of shifting. 

product of signal with the complex exponential = signal modulation. 

30

7. Signals’ product

circular (or periodic) 
convolution of discrete-time 
periodic sequences, see next
slide.
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8. Circular convolution of signals

- dual operation of 
multiplication
x[n] and y[n] periodic with
period N, Fourier 
coefficients ck

x and ck
y

The signal z[n] is also periodic with period N. 

32

9. Discrete-time Differentiation

defined by the first order difference of the signal x[n] -
difference between signal and its delayed version with 1. 

If the original signal is periodic than its first order difference is 
also periodic with same period. 

Homework: Prove it.



17

33

10. Addition in time domain

The sum of samples of x [n]  with period N , with no DC 
component (            ) has the same period : 

Proof.

sum of the samples over one period
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discrete-time differentiation of y[n], y[n]-y[n-1]= x[n]:
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11. Properties of the Fourier coefficients of the real signals

If x[n] is real then it equals its complex conjugate. So its Fourier 
coefficients will equal the Fourier coefficients of its complex 
conjugate given by the property number 3.

Polar form:

Cartesian form:

The even and odd parts of a real signal:

36

Parseval’s Relation

the square of the l2 norm of the considered signal. 

-the power of the periodic signal - can be computed in the time 
domain or in the frequency domain. 



19

37

Discrete-Time Fourier Transform

non-periodic signal → periodic signal by repetition:

N →∞, periodic signal → non-periodic one. 
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Definition

Discrete-Time Fourier Transform.

Inverse Discrete-Time Fourier Transform.
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The Fourier expansion of a periodic signal :

its Fourier coefficients are :

for the N values of k belonging to an interval which length is N
the periodic signal and the original one are equals. For the rest 
of the values of n the original signal equals zero:

40

notation:

the corresponding periodic signal :

At the limit N →∞ (Ω0 → 0) :
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The periodic signal is:

where:

For the signal considered :

the function X(Ω) :

42

The spectrum of the 
original signal is the 
envelope X(Ω).
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Discrete-Time Fourier Transform.

If the signal x[n] belongs to l1 then the DTFT is convergent.

Proof.
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Initial Properties of the Discrete-Time 
Fourier Transform

1. The Discrete-Time Fourier Transform of a signal is 
continuous. 

Proof.
For a little increment, ΔΩ, applying the definition of the 

Discrete-Time Fourier Transform, it can be written:

The absolute value of this difference is bounded.
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Taking the limit for ΔΩ→0, we have:

So:

The Discrete-Time Fourier Transform of a signal is continuous. 

46

2. The Discrete-Fourier Transform is periodic with period 2π.

Applying the definition:
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So:
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The Case of Finite Energy Signals

In this case the Discrete-Time Fourier Transform is defined 
using the limit in mean square:

limit in mean square  l.i.m. :

48

Examples
1.
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2.

3.

Applying the definition:

Complex function with the absolute value and the argument:

50
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Discrete Time Fourier transform for 
periodic signals

52

The DTFT of the unitary magnitude complex exponential -
expressed with the aid of distributions

DTFT for periodic signals
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Fourier series decomposition of a discrete-time signal :

for a complex exponential with the frequency kΩ0:

The DTFT is linear: 
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Taking into account the definition of the Dirac’s periodic 
distribution:

Let                    on the basis of the Fourier coefficients periodicity it 
can be written,            So the last relation becomes:
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An example

The Fourier 
coefficients

⇒

56

The original signal and the corresponding DTFT:
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Discrete-Time Fourier Transform

1. Linearity

2. Time-shifting
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3. Modulation in time

[ ] ( )0
0

j ne x n X .Ω ↔ Ω − Ω

4. Time Scaling

( ) [ ] ( )kx n X k .↔ Ω

5. Signal’s complex conjugation

[ ] ( )* *x n X .↔ −Ω
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6. Time reversal

[ ] ( )x n X .− ↔ −Ω

7. Discrete-time differentiation

[ ] [ ] ( ) ( )1 1 jx n x n e X .− Ω− − ↔ − Ω

8. Signals convolution
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9. Adding in time
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12. Real Signal Discrete-Time Fourier 
Transforms’ Properties
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Energy Spectral Density
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SX(Ω) - square of the absolute value of the Discrete-Time Fourier 
Transform. The energy of the considered signal is obtained 
integrating it.

=Energy spectral density
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Frequency Response of Discrete-
Time Linear Invariant Systems

[ ] ( )  h n H .↔ Ω

The Discrete-Time Fourier Transform of the impulse response 
of an LTI system gives the frequency response of that system.

64

The Response of a Discrete-Time LTI 
system to a Periodic Discrete-Time Input 

Signal

Particular example, harmonic input signal:
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Fourier coefficients:

because

66

The Case of LTI Systems Described 
by Linear Finite Difference Equations 

with Constant Coefficients 

The general form of a linear finite difference equation with 
constant coefficients is:

Taking the Discrete-Time Fourier Transform of the both sides it 
results:
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The frequency response of the system is obtained dividing the 
Discrete-Time Fourier transform of the output by the Discrete-
Time Fourier Transform of the input: 

68

Examples
i) 

Identifying this equation with the general form:

the coefficients ak and bk are obtained. By their substitution in the 
general expression of the frequency response:
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with:

To determine the impulse response, the frequency response must be 
decomposed in simple fractions: 

Applying for each simple fraction the Inverse Discrete-Time 
Fourier Transform, the impulse response can be obtained:

70

ii) determine the impulse response of the system from the 
frequency response:

decomposition in simple fractions:

the Inverse Discrete-Time Fourier Transform :
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iii) the impulse response and the unit step response for :

Identifying the coefficients and applying the general relation :

The Discrete-Time Fourier Transform of the unit step signal is:

The Discrete-Time Fourier Transform of the response becomes: 
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The Discrete-Time Fourier Transform of the step response :

decomposition in simple fractions :

Inverse Discrete-Time Fourier Transform ⇒ the unit step 
response of the considered system:
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First and Second Order Discrete LTI 
Systems 

the frequency response of a discrete LTI system is a rational 
function.

The two polynomials can be factorized. Each factor is a first or a 
second order polynomial.

74

-product in frequency domain = a convolution in time domain ⇒

first order polynomial factor  ⇔ first order system

second order polynomial factor ⇔ second order system. 

-knowing the behaviour in frequency of first and second order 
systems we can deduce the behaviour in frequency of any discrete 
LTI system. 

This is why the first and second order systems are so important.
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For M=N, the decomposition of the frequency response in simple 
fractions is:
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First Order Systems
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Second Order Systems
the linear finite difference equation - constant coefficients and
two parameters:

The frequency response:

The impulse response:

The unit step response:



40

79

( )
( )

[ ] ( ) [ ]

( )
( ) ( ) ( ) ( )

( )

[ ]
( ) ( )

( ) [ ]

2

22 2 2 2

2 2

0
1   1  .

1

1 1 1 1
1 1 11 1 11

1 1
11 1

n

j

j jj

n n

.

H h n n n
e

S .
e ee

s n n n .

− θ

π− Ω − Ω− Ω

θ =

Ω = ⇒ = + ρ σ
− ρ

ρ ρ π
Ω = − − + + δ Ω

− ρ − ρ −− ρ − ρ − ρ− ρ

⎡ ⎤ρ ρ⎢ ⎥= − ρ − + ρ σ
− ρ⎢ ⎥− ρ − ρ⎣ ⎦

Two Particular Cases
1.

80

( )
( )

[ ] ( )( ) [ ]

[ ]
( ) ( )

( ) ( )( ) [ ]

2

2 2

 
1  

1

1  ,

1 1
11 1

j

n

n n

.

H .
e

h n n n

s n n n .

− Ω

θ = π

Ω =
+ ρ

= + −ρ σ

⎡ ⎤ρ ρ⎢ ⎥= + −ρ + + −ρ σ
+ ρ⎢ ⎥+ ρ + ρ⎣ ⎦

2.



41

81

Some Graphical Representations
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