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Course 4: Baseband data 
transmission
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“Data is a lot like humans: It is 
born. Matures. Gets married to 

other data, divorced. Gets old. One 
thing that it doesn't do is die. It has 

to be killed. ”
Arthur Miller,
American playwright and 
essayist



3

Agenda

z General model of the baseband data transmission 
systems

z ISI-less data transmission
z Nyquist filters: raised cosine/squared root raised 

cosine
z Baseband transmission with controlled ISI
z Evaluating the ISI level using the eye diagram
z Error probabilities for the baseband transmission
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Model for baseband data transmission

{an} PAM
a(t)

GE(ω)
s(t)

C(ω)

n(t)

GR(ω)
Threshold
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{ean}

t0+kT

r(t)

Legend:

•an: sequence of bits to be transmitted 

•PAM: pulse amplitude modulator

•GE(ω), GR(ω): emission/reception filters (their transfer function)

•s(t): signal which carry data, transmitted in the channel

•C(ω): channel (physical environment) transfer function

•n(t): additive white noise

•r(t): received signal (based on it, a decision is made)

•Threshold comparison: e.g. positive value leads to “1”, negative to “0”

•ean: estimation of the received bits (ideally, identical to an)  
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General remarks

z In practice:

Model for the baseband data transmission

)()()( 1tAstr 0τ−=z For an ideal channel:
z An “ideal channel” attenuates the input signal (A) and 

introduces a delay (tau)
z Both are constant !!! (they DO NOT DEPEND on the frequency)

)()( 2AeC 0jωτ−=ω

)()()( )( 3eAC j ωϕ−ω=ω

z The derivate of the phase of C(ω) is called group delay, and is 
constant in this scenario

z The real channels distort the input signal and they are 
frequency-selective (dispersive)
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The baseband chain: mathematical approach [1]

z The PAM gives a first signal model for the data sequence:

z GE “shapes” the signal for transmission:

Model for the baseband data transmission
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The pulse amplitude modulator (PAM) is an imaginary block; its output 
is a sequence of Dirac pulses, separated in time by the symbol time (T). Thus, for 
every bit of “1”, a positive pulse is issued, whereas for every bit of “0” a negative 
pulse is generated. Although such pulses cannot be generated in practice, the PAM 
helps to the mathematical modeling of the transmission system. 
ge(t) is a pulse shaping filter (at the transmission side). This filter shapes the signal, 
such a way that every digital information symbol is represented by a certain 
waveform g(t).



7

The baseband chain: mathematical approach [2]

z If g(t) stands for the equivalent impulse response of the chain 
emission filter – channel – reception filter, then:

z The received signal is a weighted sum of g(t) waveforms, 
affected by additive noise 

Model for the baseband data transmission
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The received signal (eq. 7) is a weighted sum of g(t) shapes; g(t) is the equivalent 
impulse response of the assembly transmission filter – physical channel – reception 
filter. According to eq. 7, the received signal is a weighted sum of g(t) waveforms, 
perturbed by the additive noise n(t).
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The baseband chain: mathematical approach [3]

z In order to identify the k-th symbol, the corresponding  k-th
sample is collected by the receiver: 

z Re-written:

z The k-th received sample depends on all the N transmitted 
symbols and on the sampled values of g(t) and n(t)

Model for the baseband data transmission
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The received analog signal r(t) (but which conveys digital data) must be sampled, 
and a decision block will make an estimation of the transmitted bits. According to 
eq. (9), the kth received sample depend on all the transmitted bits an, although it 
would be desirable to depend only on the current (k-th) received sample.
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ISI-less data transmission

z Reminder:

z Re-writing (9) (t0=0 for simplicity): 

z By correctly choosing g(t), ISI can be eliminated:
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All terms which do not depend on ak are ISI terms!!!
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The k-th received sample, rk, is a weighted sum of the type angk-n, 
perturbed by the noise sample nk too. Ideally, rk should equal ak, and in this case 
the received sample is identical to the transmitted symbol. Therefore, from eq. (10), 
only the middle term is useful, while all other terms are undesired. Thus, all terns 
depending on an (excepting the middle one) introduce an influence of the adjacent 
transmitted symbols an on the current bit: this influence is called ISI (Inter-Symbol 
Interference). Another adverse effect is the white noise, nk.

ISI can be eliminated if the left and the right terms are “forced” to be 0 
(Caution: the noise’s influence still exists!!!). This rule is met by Nyquist’s criterion 
for ISI-less data transmission (eq. 11).

Let’s “decode” now eq. (11): the transmission is free of ISI if the 
waveform g(t) exhibits regular zero crossing at all the sampling point from the 
reception side (nT), excepting for the current sample (n=0). Notice that the criterion 
only introduces a rule related to the sampling points: there is no constraint imposed 
on g(t), excepting those particular points. Theoretically, any waveform g(t) that 
meets this rule will generate no ISI, but this statement is true only if the receiver 
faithfully respect the ideal sampling points.

Reminder: g(t)=ge(t)*c(t)*gr(t). Although the response c(t) only 
depends on the physical characteristics of the transmission environment, the 
transmitter and reception filter can be designed such a way that g(t) to meet 
Nyquist’s criterion.  
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Nyquist theorem

z In a channel which is equivalent with an ideal low-pass filter having the 
cutoff frequency F, it is possible to transmit symbols with a modulation 
rate  equal or less to 2F symbols/sec, without ISI

z The characteristics of such a channel are shown below

ISI-less data transmission

Transfer function Impulse response

According to the Nyquist theorem, the best spectral efficiency for an ISI-less data 
transmission (that is the highest ratio between R (rate) and W (bandwidth)) can be 
achieved if every symbol is shaped as a cardinal sine, which corresponds to an 
ideal LPF. In this case only, the transmission can be made at a symbol rate which is 
twice the bandwidth, while preserving it free of ISI.  That’s why this transmission 
rate is sometimes referred to as “ideal rate” or “Nyquist rate”.
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Graphical view of the Nyquist theorem

ISI-less data transmission
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Symbol time = T0/2=1/2F

Symbol time = the time interval between the transmission in the channel of two 
consecutive information symbols. 
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Ideal case: a closer look

z The impulse response of the ideal low-pass filter is:

z Such a waveform crosses zero every T0/2 seconds
z In frequency, this corresponds to an ideal low-pass 

(brick-wall) filter, with the cut-off frequency F=1/T0

z If a symbol is issued every T0/2 seconds, 
transmission can be made without ISI

z The rate in this case will be 2F symbols/s (Nyquist
rate, ideal rate)

ISI-less data transmission 
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Although, unlike in the digital baseband transmission (e.g.:NRZ), a single 
information symbol is represented by a waveform with infinite duration (a cardinal 
sine), we can transmit the next information symbol at the first zero crossing of the 
sinc waveform (i.e.: at T0/2); this will prevent ISI to occur and will allow a 
transmission at a rate of 2/T0 symbols/sec. The later statement is identical with 
Nyquist’s theorem, formulated on the previous slide. 
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Nyquist: from fiction to reality

z If the equivalent channel was an ideal low-pass filter, 
transmission can be made at the Nyquist rate, 
without ISI

z The later statement is valid only if the receiver 
faithfully respects the sampling times 

z In practice, we never deal with ideal filters (which are 
non-causal, infinite duration)

z More the transfer function gets closer to the 
“brickwall”, higher will be the speed of signal 
variation nearby 0

z A small error in the sampling time leads to an 
important energy of the ISI 

z …we must seek other forms of Nyquist filters!!!

ISI-less data transmission 

The ideal LPF is unpractical, because its impulse response is infinite as duration 
and not-causal. In frequency, this characteristics are the basis for the ideal, 
rectangular (“brick-wall”) form that corresponds to this filter.
Other disadvantages: the waveform evolution nearby the zero-crossing points is 
very “quick”, so a small mistake in the sampling time will significantly impact the 
expected value of the sample. In practice, other forms of filters satisfying Nyquist
criterion must be used. 
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The road to the Nyquist filters [1]

z The equivalent response of the channel, at the 
sampling moments nT can be expressed as:

z By substituting                      ,we get:

ISI-less data transmission 
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Starting with eq. (12), a mathematical method to find other filters that satisfy Nyquist
criterion for zero ISI. Eq. (12), shows the expression of the n-th sample of g(t), 
expressed as the inverse Fourier transform of G(ω), computed at t=nT.  
The term in the square brackets (rel. 13) is directly related to the spectrum of a 
shape that would satisfy ISI-less data transmission criterion. 
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The road to the Nyquist filters [2]

z Reminder: the ideal LPF has the transfer function: 

z By comparing (13) and (14), we obtain:

ISI-less data transmission 
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Any spectrum that satisfies eq. (15) corresponds to a waveform that meets 
Nyquist’s criterion. The spectra G(ω) that are inside the sum operator are not ideal 
LPF, but added up for k=-1,0 and 1 they will lead to an ideal LPF. 
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The ultimate consequence of (15)…

z Ideal LPF from (14) can be 
approximated “piece-by-piece” (“k by k”
from 15)

z Any transfer function G which respects 
(15) can be used as Nyquist filter
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The road to the Nyquist filters [3]

ISI-less data transmission

z G(ω) satisfies Nyquist’s zero ISI criterion if it exhibits symmetry around 
π/T (A and AI) points

z In this case, the side bands (k=-1 and k=1) “compensate” the 
frequency response of the main lobe (k=0), such a way that eq. (15) is 
satisfied

z A common choice for G is provided by the raised cosine filters

Band for k=-1 Band for k=0 Band for k=1

It is straightforward that, in order to satisfy (15), the spectrum G(ω) must exhibit 
symmetry around the cut-off frequency Ω=π/T, as shown in the figure above. If 
G(ω) and the ideal LPF determine equal areas to the left and to the right of Ω, then 
G(ω) corresponds to a waveform that meets Nyquist criterion. 
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The raised-cosine family

z The previously formulated criteria is met if:

z The impulse response will be:

ISI-less data transmission
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There is a whole category of filters that meet Nyquist’s criterion and respect the 
symmetry of their spectra around the cut-off frequency. These filters are referred to 
as Nyquist pulse-shaping filters, or “raised-cosine” filters, because the shape of their 
spectrum, which looks pretty much like a cosine in the frequency domain. Both their 
frequency (16) and their impulse response (17) depend on a parameter α, called 
roll-off factor or excess bandwidth, which spans from 0 to 1. 
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Comments on the choice of the roll-off factor

z α spans from 0 to 1 and is referred to as 
excess bandwidth or roll-off factor

z For α=0 the ideal low-pass filter is obtained, 
whereas α=1 defines the square cosine filter

z Common choices in practice range from 0.1 
to 0.5

z If we want to achieve a data rate of R,, then 
the bandwidth we need will be:  

ISI-less data transmission
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What lies behind the “excess bandwidth” name?
The answer is given by relation (18). Basically, “excess bandwidth” means the extra 
bandwidth we need, when compared to the bandwidth we would need to achieve a 
fixed data rate of R when using cardinal sine shapes for the data pulses. 
Or, otherwise formulated: the data rate R can be reached with a consumption of 
bandwidth of B=R/2 when the pulses are cardinal sine pulses, and with a 
consumption of bandwidth B=(1+α)(R/2) when we use other types of Nyquist
waveforms than the ideal cardinal sine. 
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The need for Nyquist filters

z These filters are usually referred to as “pulse-shaping” filters
z A certain shape of the data pulses will lead to a certain level of 

spectral efficiency
z Interpreting Nyquist: “Take care how you shape the data 

pulses, and you will achieve the efficiency and the robustness 
you desire”

z Keeping α low, good spectral efficiency is obtained (☺), but 
high sensitivity to the sampling time accuracy too (/)

z In noisy channels square root raised cosine filters must be used
to the transmitter and to the receiver 

ISI-less data transmission
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Nyquist filters: when Time meets Frequency

ISI-less data transmission

*Pictures downloaded from www.complextoreal.com

• Small roll-off factor means higher transmission rate at the same occupied bandwidth

•…BUT! The energy of the side-lobes in time is higher, which causes higher sensitivity 
in case of synchronization problems

Keeping fixed the data rate !!!Keeping fixed the bandwidth !!!

The above figures highlight the need for a good compromise when choosing α. 
Thus, the left figure shows various impulse responses of some raised cosine filters. 
A small value for α will permit a higher data rate (the zero crossings of the 
waveforms appear at smaller time intervals); nevertheless, the side-lobes carry, in 
this case, an important amount of energy. The sensitivity to the synchronization 
errors will be higher than for high values of α (close to 1), when the side-lobes have 
smaller amplitudes.

The right figure shows the frequency responses of several filters from the raised 
cosine family; when plotting these responses, we consider a fixed transmission rate. 
The lowest bandwidth consumption, as expected, is given by the brick-wall and 
higher will be the value of α, higher the extra bandwidth required, compared to the 
brick-wall. 
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Squared cosine case

ISI-less data transmission
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•Very low-energy sidelobes

•Symbol time doubled compared to the sinc case

In the case of α=1, we get the squared cosine filter. As shown in the above figure, 
its side-lobes are almost negligible, which is a good property from the ISI 
robustness point of view. The dashed line has the meaning of a comparison 
threshold, always needed in practice, in order to make accurate decisions on the 
transmitted symbols. E.g.: sample>0.5 means “1”, sample<0.5 means “0”.
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Practical implementation 
of the raised cosine filter

ISI-less data transmission

Analog Addition circuit

clock

Input 
bits

Shift 
register

Amplifiers

Shaped output
s(t)

b-4 b-3 b-2 b-1 b0 b1 b2 b3 b4

• The impulse 
response is 
approximated by 
samples

• Every sample 
represents an 
amplification factor

Although the raised cosine filters, as defined by equations (16, 17) are 
closer to the practical implementation than the ideal LPF, they still have some 
properties that makes their exact implementation impossible: their impulse response 
is infinite, and they are not causal. In practice, we need to apply a time window of 
finite duration on the impulse response, and to shift this windowed version to the 
right, such as to obtain a causal system. The two effects are shown on the above 
figure, where the impulse response has finite duration and is 0 for negative values 
on the time axis.

In practice, these filters are implemented using digital circuits. That is, 
instead of having an analog waveform like in the figure above, we will get some 
samples of this waveform. The most common implementation relies on FIR (Finite 
Impulse Response) filters, that have a finite number of coefficients. Their values are 
given by the amplitude of the samples taken from the original waveform. Such a 
filter can be implemented using a transversal structure, as shown in the upper figure 
from this slide. This implementation uses a shift register with N cells (N=9 in our 
case). The result is that we get a FIR filter with 9 taps. Most of the digital 
transmission devices (and especially in wireless transmission) incorporate such a 
filter.  
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Transmission with controlled ISI

z Motivation:
– In practice, the raised cosine filters will not reach the 

Nyquist rate
– Closer they are to this objective, higher is the transmission 

sensitivity to synchronization errors
z Solution:

– Some degree of ISI can be tolerated, if the ISI is “controlled”
– Higher rates can be obtained
– The cosine filter allows to reach the Nyquist rate

z Principle: every waveform g(t) will carry two-bits of 
information

z This is the reason for calling this transmission “duo-
binary”

The raised cosine filters can be we well approximated in practice, but they can only 
achieve 1/1+α of the Nyquist rate. If we want a transmission robust to ISI, high 
values should be chosen for α. For example, if α=0.5, only 66% of the Nyquist rate 
can be obtained. This drawback is the main motivation behind the transmission with 
controlled ISI. This transmission, commonly referred to as duo binary transmission, 
sacrifices the “ISI-less” principle, but allows to reach the Nyquist rate. ISI is 
controlled, in the sense that, by system’s design, the ISI influence is accurately 
known and the phenomenon can be counteracted at receiver side. 
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The cosine filter

Transmission with controlled ISI
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When, instead of a raised cosine, a cosine filter (eq. 19,20) is used for shaping 
purposes, the signal so generated will lead to a transmission with controlled ISI. 
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Graphical view

z Three successive bits 
of “1” are transmitted

z In the sampling 
moments, the sample 
value depends only on 
the current and on the 
previous transmitted bit

z The ISI is thus 
controlled (the amount 
of ISI is known) 

Transmission with controlled ISI
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Sampling times

It can be seen from the figure above how, at the sampling instants the collected 
samples depend not on a single transmitted symbol, but on exactly two transmitted 
symbols (the current one and the previous one). That’s why the transmission is 
called with controlled ISI (ISI exists, but it’s known and, therefore, it can be 
controlled/counteracted).
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Mathematical approach

z The k-th sample can be expressed as:

z In the right-side sum, all the terms are zero (they 
match exactly the zero-crossing of g). It follows that:

z Theoretically, if ak is bi-polarly encoded rk may take 
three values:

Transmission with controlled ISI
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The k-th received sample can be described according to (24). If cosine waveforms 
are used to shape the bits and the sampling times are faithfully respected, the right 
side sum is zero, and rk will only depend on ak and on ak-1.
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Graphical view 

Transmission with controlled ISI

A signal with controlled ISI is show in the figure above. Thus, two successive bits of 
“1” will issue a collected sample of amplitude 2; when a “1” is followed by a “0” ore 
vice-versa, the sample will be 0; finally, two bits of “0” will issue a sample of value -
2.  
The main disadvantage of a transmission with controlled ISI is the fact that the 
decision on the current bit, e.g. ak, depends on the decision of the previous bit, ak-1. 
E.g.: if rk=0, we have to know the value of the previous bit, in order to make a 
decision about the current one. If ak-1 was, for example, detected as a “0”, it follows 
that ak is “1”.   
If the ak-1 is wrongly detected, the error propagates until a new error will turn the 
decision to the right path. 
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Pre-coding

z Disadvantage of controlled ISI: every decision 
depends on two successive bits (error propagation)

z Solution: pre-coding performed
z Instead of ak, another sequence (bk) is transmitted, 

computed as:

z This leads to a one-sample based decision, as 
follows:

Transmission with controlled ISI
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The pre-coding, at the transmitter side, removes the dependency of the decision on 
the two bits. Somehow, this inter-bit dependency is “transferred” at the 
transmitter side. This can be simply done by means of a pre-coding operation. 

The transmission steps are now:
1. The original bits an are randomly generated
2. The precoded bits bn are computed
3. The precoded bits are bipolarly encoded (i.e.1 -> +1V, 0 -> -1V).
4. The signal so obtained is passed through a cosine filter, to generate a 

transmission with controlled ISI.
Thus, instead of transmitting directly the “original” bits an, some new bits bn (the 

“pre-coded” stream) are generated, according to (27). Taking into account this 
pre-coding, the receiver has to inverter, in order to extract an, the original bits, 
inversion shown by equation (28). The reception steps are:

1. The signal is sampled (rk) values are collected.
2. Decision is made:

• if  rk is 2 or -2, it follows that bk=bk-1, and ak=0 (see eq. 27)
• if rk is 0, it follows that bk≠bk-1 and ak=1
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Eye diagram…at a glance

z The eye diagram allows to evaluate the degree of ISI
z It is obtained by superposing the time domain representation of the 

signal for a large number of transmitted symbols

Evaluating ISI level using the eye diagram

*Picture downloaded from the paper “Analyzing signals using eye diagram” author G Breed High Frequency Electronics Journal

The eye diagram is a very useful tool to assess the accuracy of a digital 
transmission. It can be applied to rectangular or raised cosine waveforms (those are 
the two practical cases that can be met in a digital transmission).
The eye diagram is an oscilloscope representation on a time domain signal, in 
which waveforms for every T sec. interval are superposed. E.g. Waveform that 
represent a data signal in the interval [0,T] is superposed with the waveform for the 
interval [T,2T], with the waveform for the interval [2T,3T] and so on.
In a radio system, the point of measurement for the eye diagram may be prior to the 
modulator in a transmitter, or following the demodulator in a receiver, depending on 
which portion of the system requires examination. The eye diagram can also be 
used to examine signal integrity in a purely digital base-band system—such as fiber 
optic transmission, network cables or on a circuit board. The figure above shows the 
type of information that is given by the eye diagram.
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Ideal low-pass versus square cosine
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Evaluating ISI level using the eye diagram

• The square cosine eye is more widely opened

•Lower sensitivity to the sampling times due to the reduced-energy sidelobes

•BUT!!! Using sinc waveforms (ideal low-pass) we achieve twice the data rate of 
the square cosine

Ideal low-pass
Square cosine

In the slide, we compare the eye diagram from two pulse-shaping waveforms (the 
two extreme cases of raised cosine). 
For the cardinal sine (roll-off α=0), the eye is not so widely open, pointing out high 
sensitivity to the sampling point accuracy. By the contrary, in the case of square 
cosine (roll-off α=0), the eye is widely open, the transmission is not sensitive to the 
synchronization errors, but barely one half of the Nyquist rate can be achieved.
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Eye diagram for unfiltered rectangular 
waveforms

Evaluating ISI level using the eye diagram

• Ideal eye diagram of a 
square waveform (no jitter, 
no noise)

• Misalignment of rise and 
fall times (jitter) 

• At higher rates, jitter has 
more impact (even if its 
absolute values decreases)

Figures above show some eye diagrams for purely digital systems, in which the 
data signal is made of nearly rectangular waveforms. The jitter error is clearly 
highlighted in figures 2 and 3, where misalignment of rise and fall times causes a 
kind of “grid”, or spreading, to occur towards the end of the bit intervals.
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Improving the performance of the baseband 
transmission systems

z The the k-th received symbol may be expressed as:

z The error probability for the k=0-th transmitted symbol is:

z Assuming that there is no useful signal in the channel (only AWGN 
noise with unitary variance), the noise power after the receiver filter 
is:
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*the fn subscript above emphasizes that we refer to the power of the filtered noise
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SNR maximization

z If we assume that there is no noise in the channel, the 0-th 
received sample can be computed as: 

z At t=0, we try to choose GR(ω) which maximizes

z Solution: GR(ω)=S*(ω)  (an expression of the matched filter)
z For an ideal channel, C(ω)=1 and the received signal form is 

determined by the emitter’s shaping filter: S(ω)=GE(ω) 
z The choice which maximizes the SNR:

z Example: for the square root square cosine filter, we have:

Improving the performance of the baseband transmission systems
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In the digital transmission systems we deal with two disturbing phenomena: noise 
and ISI. While the later can be counteracted using Nyquist filter, we need to focus 
our attention on the first effect too. There is a huge amount of detection/estimation 
literature, proving that if the noise is of AWGN type, the best solution is to place a 
matched filter at the receiver side.
A well balanced choice, which counteracts both effects is to use a pair of filters 
(square root raised cosine), one of which is the pulse shaping filter (at transmitter) 
and the other one that is a non optimal matched filter (at the receiver). Together, 
they will lead to an equivalent response that respects Nyquist’s criterion for zero ISI, 
while the receiver’s filter will effectively remove the noise.
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The performance of the baseband 
transmission systems 

z Error probability

z Transmission speed

z Transmission efficiency
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The error probability in ideal channels [1]

z An ideal channel for data transmission does not 
modify the signal transmitted through it (C(ω)=1)

z Identical transmitter and receiver filters may be used
z The average power of the transmitted signal is:

is the average power of the transmitted symbol

The performance of the baseband transmission systems
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The error probability in ideal channels [2]

z We assume M-level signaling, with the  levels: 
z The useful energy is conserved by the shaping filter:

z Decision thresholds at: 
z The error probability is:

z ISI is considered 0 in equation (36)

The performance of the baseband transmission systems
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Discussion on equation 36

z Reminder:
z For the two 

extreme levels, 
an error occurs 
only if noise 
sample has a 
certain sign

z For the other 
levels, the sign 
doesn’t meter

The performance of the baseband transmission systems
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The error probability in ideal channels [3]

z Taking into account the pdf of the noise in (36):

z erfc is introduced by:

z Error probability can be express as (from eq. 37,38)

The performance of the baseband transmission systems
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The error probability in ideal channels [4]

z From eq. (35), d can be expressed as:

z From (39) and (40):

The performance of the baseband transmission systems
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The error probability in ideal channels [5]

The performance of the baseband transmission systems
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The probability that the noise sample value to exceed the threshold (d=2 
in our example) is the delimited area under the Gaussian curve!!!


